如何在kaggle上面快速下载数据?

                                      如何在kaggle上面快速下载数据?

 

        现在做数据科学工作的,大部分都曾在kaggle上下载过数据集,但是最近kaggle好像搞了个API接口,这样很方便下载数据集,具体步骤如下(参考kaggle数据集下载:https://www.cnblogs.com/yuanzhoulvpi/p/8612893.html),并以具体例子说明:

        假设我们现在需要下载kaggle上面的一个图像数据集plant-seedings-classification,首先需要accept rules。然后才能下载,其具体下载过程为:

(1)安装python中的kaggle库(常用anaconda安装:pip install kaggle)如下:

 

(2)登录自己的kaggle账号,并打开My Account:

 

(3)选择create NEW API Token,下载一个json文件,保存到桌面;

(4)将这个文件移动到C:\Users\Zhangwei\.kaggle文件夹中,如:

(5)打开运行(win+R),将待下载的数据集连接复制即可:

 

(6)查看下载后的结果:

已标记关键词 清除标记
相关推荐
<span style="font-size:16px;">"java大数据人工智能培训学校全套教材"系列课程由1000集视频构成,基本就 是1)时下流行的java培训学校主流内部教材,2)和市面上培训学校的通 行的课程体系几乎一样。所以这套课程都能自己学下来,等于上了培训学校一次,完全可以找个java工程师的工作了。</span><br /> <br /> <span style="font-size:14px;"><span style="font-size:16px;">  通过学习卷积神经网络概述,为什么引入神经网络来做识别,判断,预测,</span><strong><span style="font-size:16px;">训练模型</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">激活函数</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">sigmoid激活函数</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">导数和切线</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">sigmoid激活函数如何求导</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">链式法则</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">梯度</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">梯度下降法与delta法则</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">BP(back propagation)误差逆传播神经网络</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">卷积到底有什么作用?如何做到特征提取</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">池化的名字由来</span></strong><span style="font-size:16px;">,</span><strong><strong><span style="font-size:16px;">dropout</span></strong></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">Anaconda Prompt的用法</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">Jupyter notebook的用法</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">Spyder的用法</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">建立安装Tensorflow所需的Anaconda虚拟环境</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">如何在Anaconda虚拟环境安装Tensorflow与Keras</span></strong><span style="font-size:16px;">概念等让大家对人工智能,卷积神经网络快速入门。</span></span><br /> <br /> <span style="font-size:16px;">课程特色:专业细致,偏案例,理论强。</span><br /> <br /> <span style="font-size:14px;"><span style="font-size:16px;">课程软件使用:</span><span style="font-size:14px;"><strong><span style="font-size:16px;">Anaconda,</span><span style="font-size:14px;"><strong><span><span style="font-size:16px;">Spyder,</span><span style="font-size:16px;"><strong><span style="font-size:16px;">Jupyter notebook</span></strong></span></span></strong></span></strong></span></span><br /> <br /> <span style="font-size:16px;">重要声明:</span><br /> <br /> <span style="font-size:16px;">1) 如果感觉噪音大,可以选择不用耳机,加音箱或用电脑原声 </span><br /> <br /> <span style="font-size:14px;"><span style="font-size:16px;">2) 既然我们的名字叫</span><span style="font-size:16px;">人工智能深度学习卷积神经网络入门</span><span style="font-size:16px;">,这个课程的特点就在于成本最低的, 让你最快速的,最容易的入门。</span><span style="font-size:16px;">人工智能深度学习卷积神经网络入门</span><span style="font-size:16px;">的最大的难点在于入门入不了,从而最终放弃。俗话说师傅领进门,修行在个人。只要入了门了,后面的事都好办。选课前,务必注意本章的学习目标和内容。想学更多,注意后边的课程。</span></span>
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页